

Agronomic value of sewage sludge and corn cob biochar in an infertile Oxisol

¹Department of Tropical Plant and Soil Sciences, ² Hawaii Natural Energy Institute University of Hawaii at Manoa, Honolulu HI 96822

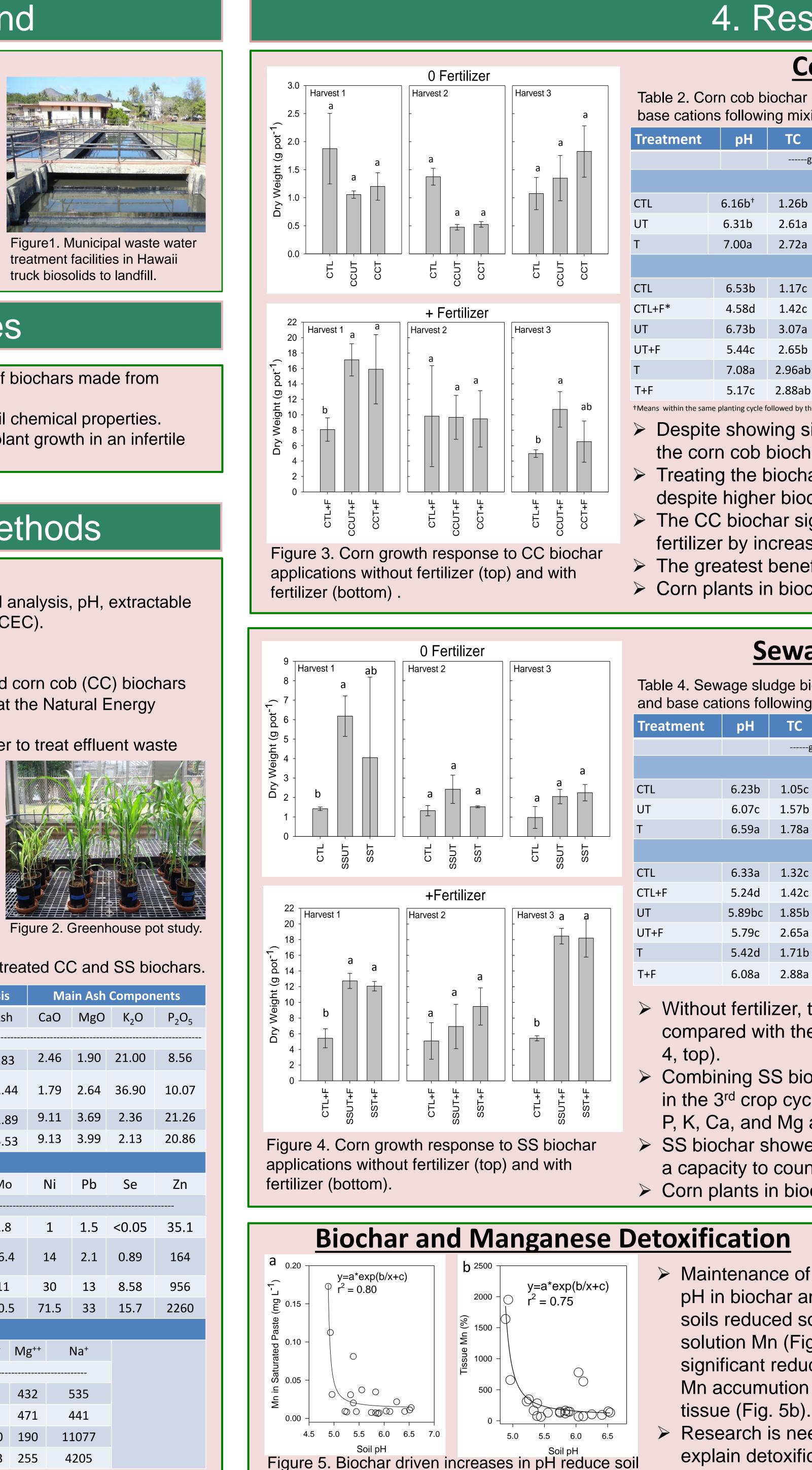
1. Background

- Approximately 40,800 tons of biosolids are sent annually to the landfill on Oahu creating an environmental hazard.
- Imminent landfill closure poses disposal problem forcing state government to explore expensive and unpopular off-shore shipping options.
- Carbonizing sludge into biochar for land application has potential to solve disposal problem, sequester C, improve soil quality, and increase agricultural productivity.

2. Objectives

- Characterize the physico-chemical properties of biochars made from municipal sewage sludge and corn cob waste.
- Evaluate the effect of biochar application on soil chemical properties. Determine the effect of biochar application on plant growth in an infertile

tropical soil.


3. Materials & Methods

Biochar Characterization

Proximate and elemental analysis, heavy metal analysis, pH, extractable plant nutrients, and cation exchange capacity (CEC).

Greenhouse Experiment

- Treated and untreated sewage sludge (SS) and corn cob (CC) biochars produced by the Flash Carbonization process at the Natural Energy Institute.
 - Treated: biochar used in anaerobic digester to treat effluent waste water.
- In fertile Oxisol: Wahiawa, very fine,
- isohyperthermic, kaolinitic, rhodic haplustox Biochar applied at 2% (w/w) and supplemented
- with complete fertilizer
- Four replicates per treatment
- Three 5-week planting cycles

Table 1. Chemical characterization of treated and untreated CC and SS biochars.

Sample		Eleme	ental Ana	alysis		Pro	xim	ate A	nalysis		Ma	in Ash	Compon	ents
	С	Н	0	Ν	S	FC	2+	VM [‡]	Asł	n C	aO	MgO	K ₂ O	P_2O_5
								%						
Raw CC	48.66	5.75	42.19	0.51	0.06	N	A	NA	2.8	3 2	.46	1.90	21.00	8.56
Biochar CC	84.94	2.42	2.66	0.89	0.13	80.	30	8.26	11.4	4 1	.79	2.64	36.90	10.07
Raw SS	37.67	5.22	14.59	7.05	3.58	N	Ą	NA	31.8	9 9	.11	3.69	2.36	21.26
Biochar SS	30.24	1.29	< 0.01	3.13	3.81	25.	83	8.64	65.5	3 9	.13	3.99	2.13	20.86
					He	eavy I	Met	als						
	As	В	Cd	Cr	Cu	H	g	Mn	Mc		Ni	Pb	Se	Zn
							n	ng kg⁻¹-						
Raw CC	0.18	2.6	0.1	9.56	4.27	<0.	02	6.90	2.8	8	1	1.5	<0.05	35.1
Biochar CC	0.56	24	0.5	24.7	24	0.5	59	21.2	16.4	4 :	14	2.1	0.89	164
Raw SS	22	197	3.3	97.4	325	0.0)2	66	11		30	13	8.58	956
Biochar SS	15.9	168	8.6	245	771	0.0)6	160	30.	57	1.5	33	15.7	2260
				рН	& Ext	racta	ble	Nutri	ents					
	рН	CEC	NH4 ⁺ -N	NO ₃ -	-N	Ρ	ŀ	〈 +	Ca++	Mg ⁺⁺		Na⁺		
							n	ng kg ^{-1.}						
Untreat CC	9.20	11.3	10.6	1.04	4	129	16	371	136	432	ļ	535		
Treat CC	9.45		24.7	0.0	3	175	10	547	140	471	4	441		
Untreat SS	6.81	15.5	216	NC)	372	12	200	1240	190	1	1077		
Treat SS	6.86		33.5	ND) 1	L285	10)15	1683	255	4	205		

Jonathan L. Deenik¹, Michael J. Cooney², and Michael Jerry Antal, Jr.²

and tissue Mn concentrations.

4. Results & Discussion

Corn Cob Biochar

Table 2. Corn cob biochar effects on soil pH, extractable P and base cations following mixing (pre-plant) and after 3 harvests.

	TN	Р	К	Са	Mg
-g k	g ⁻¹		mg	g kg⁻¹	
	Pre-Pla	nt			
C	0.15b	8.31b	427c	686c	219c
a	0.30a	10.7b	1083a	768b	258b
а	0.32a	16.8a	849b	812b	296a
	Planting	g 3			
C	0.13b	7.54d	154d	754ab	207abc
С	0.16b	14.8bc	222d	650ab	181bc
а	0.33a	7.76d	917a	830a	243ab
c	0.30a	16.9ab	393c	531b	150c
b	0.34a	12.2c	608b	872a	247a
b	0.33a	19.6a	347c	544b	162ab
the s	same letter are	e not significan	tly different (P<	:0.05), *F = ferti	lized

Table 3. Corn cob biochar effects on corn tissue concentrations for crops 1 and 3.

Treatment	N	Р	K	Ca	
			%		
			Crop 1		
Control+F	2.13a	0.13b	4.56a	0.45a	0.
Untreat+F	1.27b	0.16a	5.00a	0.31b	0.
Treat+F	1.40ab	0.14ab	4.94a	0.34b	0.
			Crop 3		
Control+F	2.81a	0.15a	4.59a	0.54a	0.
Untreat+F	2.07a	0.19a	4.24a	0.33b	0.
Treated+F	2.77a	0.21a	5.09a	0.39ab	0.

Despite showing significant increases in soil pH, TC, TN and extractable P and base cation the corn cob biochar without fertilizer had no effect on corn growth (Fig. 3, top).

Treating the biochar showed no significant effect on corn growth alone or in combination will despite higher biochar nutrient content (Fig 3, bottom).

The CC biochar significantly increased corn growth in the 1st and 3rd crop cycles when com fertilizer by increasing soil P and K availability and reducing tissue Mn concentration(Table The greatest benefit to corn growth occurred in the 1st crop cycle suggesting only a short-live > Corn plants in biochar amended soils showed similar heavy metal tissue concentrations as

Sewage Sludge Biochar

Table 4. Sewage sludge biochar effects on soil pH, extractable P and base cations following mixing (pre-plant) and after 3 harvests.

g r	g mixing (pre-plant) and after 3 harvests.					
	TN	Ρ	K	Са	Mg	
g k	g ⁻¹		mខ്ല	g kg⁻¹		
	Pre-Pla	nt				
С	0.21a	24.0b	285c	957b	251c	
b	0.18a	24.1b	434a	1137a	363b	
а	0.21a	31.9a	375b	1092a	385a	
	Planting	g 3				
С	0.15c	6.48e	193ab	816b	226d	
С	0.16c	16.5de	98.3bc	674c	151e	
b	0.21b	24.4cd	160abc	916a	361b	
а	0.21b	58.8a	68.4c	850ab	272c	
b	0.19b	38.1bc	205a	909a	396a	
а	0.32a	52.4a	80.3c	911a	339a	

Table 5. Sewage sludge biochar effects on corn ti concentrations for crops 1 and 3.

Treatment	Ν	Р	K	Са	
			%		
			Crop 1		
Control+F	3.32a	0.19b	5.28ab	0.39a	0
Untreat+F	3.03a	0.29a	5.52a	0.37ab	0
Treat+F	2.07b	0.27a	4.84b	0.31b	0
			Crop 3		
Control+F	2.37a	0.15b	3.45a	0.48a	0
Untreat+F	1.14b	0.20a	1.71b	0.25b	0
Treat+F	1.07b	0.22a	1.78b	0.29b	0

Without fertilizer, the untreated sewage sludge biochar showed a significant increase in cor compared with the control. The increased yield was correlated with increased P and Mg av

Combining SS biochar and fertilizer increased corn biomass by more than 2X in the 1st crop in the 3rd crop cycle (Fig. 4, bottom). Increased corn growth was correlated with higher pH P, K, Ca, and Mg availability in the SS biochar amended treatments (Table 4 & 5). \succ SS biochar showed a significant reduction in tissue Mn concentration especially in the 3rd a capacity to counteract the negative impacts of Mn toxicity in the acidified Wahiawa soil. Corn plants in biochar amended soils showed similar heavy metal tissue concentrations as

mechanism

Summary Domestic sewage sludge biochar shows promise as a amendment providing an environmentally sound means of disposal. Biochar shows potential to improve soil fertility, increase plant nutrition and growth, and mitigate Mn toxicity in acid soils. Greenhouse results must be validated at the field scale.

Acknowledgements

This research was supported by the Water, Energy, Soil, and Sustainability program funded by the Vice Chancellor's Office of the University of Hawaii at Manoa. Many thanks to Joshua Niepp, Elyssa Ermatinger, Lloyd Paredes, and Joshua Silva for technical assistance.

nutrient	
Mg	Mn
	mg kg ⁻¹
.27a	428a
.20b .24ab	114b 121b
.2-40	1210
.37a	1796a
.27b	468b
.34ab	706b
ns (Tab	ole 2) ,
ith fert	ilizer
bined	with
2 & 3)	
ved be	
the co	ontrol.
issue nu	ITRIANT
Mg	Mn
	Mn
	Mn
Mg 0.28b 0.37a	Mn mg kg ⁻¹ 193a 266a
Mg 	Mn mg kg ⁻¹ 193a
Mg 0.28b 0.37a 0.30b	Mn mg kg ⁻¹ 193a 266a 74.9b
Mg 0.28b 0.37a	Mn mg kg ⁻¹ 193a 266a
Mg 0.28b 0.37a 0.30b 0.30b	Nn mg kg ⁻¹ 193a 266a 74.9b
Mg 	Nn mg kg ⁻¹ 193a 266a 74.9b 328a 146b
Mg 	Nn mg kg ⁻¹ 193a 266a 74.9b 328a 146b
Mg 	Nn mg kg ⁻¹ 193a 266a 266a 74.9b 328a 146b 69.1b
Mg 	Mn mg kg ⁻¹ 193a 266a 74.9b 328a 146b 69.1b
Mg 	Nn mg kg ⁻¹ 193a 266a 266a 74.9b 328a 146b 69.1b
Mg 0.28b 0.37a 0.30b 0.41a 0.40a 0.43a 0.43a	Mn mg kg ⁻¹ 193a 266a 74.9b 328a 146b 69.1b
Mg 	Mn mg kg ⁻¹ 193a 266a 74.9b 328a 146b 69.1b
Mg 	Nn mg kg ⁻¹ 193a 266a 266a 74.9b 328a 146b 69.1b 69.1b
Mg 	Mn mg kg ⁻¹ 193a 266a 266a 74.9b 328a 146b 69.1b 69.1b
Mg 	Mn mg kg ⁻¹ 193a 266a 266a 328a 328a 146b 69.1b 69.1b